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ABSTRACT

Background: A new diagnostic methodology developed in the context of dynamic system theory has allowed the assessment of elec-
trocardiographic registries, achieving objective and reproducible diagnoses. 
Objective: The purpose of this study was to test the clinical applicability of this methodology based on the probability and the en-
tropy proportions of the attractor through a blinded study compared with the gold standard.
Methods: A total of 650 electrocardiographic registries were analyzed: 150 normal and 500 with different diseases. Numerical at-
tractors were generated from 18-hour registries of heart rate values and probability, entropy and entropy proportions of each attrac-
tor were calculated. The physical-mathematical diagnosis was established and the clinical applicability and clinical reproducibility 
of the mathematical methodology was compared to the conventional clinical diagnosis, calculating sensitivity, specificity and kappa 
coefficient. 
Results: One hundred percent sensitivity and specificity and a kappa coefficient of 1 with regard to the conventional clinical diagno-
sis confirmed the clinical applicability of the postulated method.
Conclusion: The application of this methodology allowed the quantitative differentiation between normal and abnormal cardiac 
dynamic states, evidencing self-organization of the geometric dynamic attractor which constitutes a method of diagnostic aid ap-
plicable to clinical practice. 
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RESUMEN

Introducción: Una nueva metodología diagnóstica desarrollada en el contexto de la teoría de los sistemas dinámicos ha permitido la 
evaluación de registros electrocardiográficos, logrando diagnósticos objetivos y reproducibles.
Objetivo: Confirmar la aplicabilidad clínica de la metodología fundamentada en la probabilidad y las proporciones de la entropía del 
atractor mediante un estudio ciego respecto del patrón oro.
Material y métodos: Se analizaron 650 registros electrocardiográficos, 150 normales y 500 con diferentes patologías, mediante un 
estudio ciego. Se generaron atractores numéricos a partir de los valores de la frecuencia cardíaca en 18 horas; luego se calcularon la 
probabilidad, la entropía y las proporciones de la entropía de cada atractor. Se estableció el diagnóstico físico-matemático y se evaluó 
la aplicabilidad y reproducibilidad clínica de la metodología matemática respecto del diagnóstico clínico convencional, calculando la 
sensibilidad, la especificidad y el coeficiente kappa.
Resultados: Se confirmó la aplicabilidad clínica del método propuesto al hallar valores de sensibilidad y especificidad del 100% y un 
coeficiente kappa de 1 respecto del diagnóstico clínico convencional.
Conclusión: La aplicación de la metodología permitió diferenciar cuantitativamente estados de normalidad y anormalidad de las 
dinámicas cardíacas, evidenciando una autoorganización del atractor dinámico geométrico, que constituye un método de ayuda 
diagnóstica aplicable a la clínica.
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INTRODUCTION
The study of heart rate variability (HRV) aims to es-
tablish patterns that define the different cardiovas-
cular diseases from the electrical signals of the heart. 
(1) The spectral analysis of HRV provides analytical 
characteristics of its cyclic variations, but it cannot 
show the dynamic properties of fluctuations. (2) At 
present, HRV research focuses on techniques analyz-
ing its time domain (3, 4) and standard frequency. (1)

The dynamical system theory studies the system 
state and behavior, analyzing its variables as the sys-
tem progresses in time, based on theoretical physical-
mathematical postulations from an acausal perspec-
tive. (5, 6) Plotting in the phase space, the behavior 
of the system is analyzed by its dynamic variables 
generating different types of attractors. (7) Moreover, 
there are physical or mathematical phenomena which 
present a finite number of possible events, whose oc-
currence is assessed with the probability theory. (8) 
The concept of entropy was founded upon the study 
of out of equilibrium systems mainly for the kinetic 
theory of gases and statistical mechanics. (9-11) Dy-
namical systems, probability and entropy are some of 
the mathematical theories applied to the evaluation 
of cardiac dynamics. (1, 12)

Different types of entropy used in cardiology are 
defined from the analysis of three, four or six electro-
cardiographic parameters, with variations in the test 
cases. (1) Some studies have found that the length of 
data affects entropy sensitivity. (3, 13, 14) Effectively, 
HRV data have been tested increasing the number 
and size of data sample. (1) However, the choice of en-
tropy-associated parameters establishing significant 
differences between normal and pathological cardiac 
rhythms, are still subject to study.

In addition, other non-linear types of analysis 
have emerged, as the Poincaré plot analysis, (15-19) 
a geometric method able to assess cardiac rhythm 
variability from the representation of a time series 
in the Cartesian plane, where the values of each pair 
of successive elements define a point in the plot. The 
so-called Poincaré map, (15, 16) also known as the 
Lorenz map, allows the reconstruction of system at-
tractors based on experimental HRV series to predict 
cardiac disease and dysfunction.

In the past years, newly developed methodolo-
gies have enabled more accurate diagnoses, through 
mathematical ranges differentiating between nor-
mality and disease. (20-23) These methodologies as-
sess heart rate (HR) values independently of the clini-
cal parameters established for HRV. For example, a 
method was developed based on the attractor entropy 
probability and proportions (22) to assess electrocar-
diographic registries. In later studies, (21, 22) the re-
producibility and clinical applicability of this method-
ology has been confirmed, with 100% sensitivity and 
specificity, and kappa coefficient of 1, with regard to 
the conventional clinical diagnosis. 

The aim of the present work was to confirm the 

clinical applicability of the method based on propor-
tional entropy, by means of a blinded study of diag-
nostic concordance with the gold standard in normal 
and pathological electrocardiographic registries.

METHODS
A total of 650 Holter monitoring studies were evaluated by 
an expert cardiologist. They were divided into 150 normal 
registries and 500 with different pathologies. These regis-
tries were obtained from subjects >21 years of age and were 
part of a previous research database from the Insight Group. 
To apply the proportional entropy method, clinical outcomes 
were masked for each registry, taking maximum and mini-
mum HR values and the total number of beats every hour, 
for at least 18 continuous hours. These values were then 
transferred to a delay map to generate a numerical attrac-
tor, where the frequency of HR ordered pairs were plotted 
in ranges of five beats per minute. Next, the regions were 
evaluated by means of the occupation probability in relation 
to the total (see Definitions). The probability calculated for 
each range of five beats per minute in the phase space, con-
siders each HR pair as an event with Equation1. Then the 
entropy for each attractor was calculated with Equation 2.

Definitions
A delay map was defined as the geometric space that gen-
erates a type of attractor representing graphically the be-
havior of a system, by positioning ordered pairs of values 
of a time-consecutive dynamic variable in a space of two or 
more dimensions. Moreover, the HR pair (X, Y) represents 
any consecutive combination of two HR in the delay map, 
positioned in ranges of five beats per minute, according to its 
coordinates. The probability of the pair of consecutive HR is 
the ratio between the number of ordered HR pairs occupying 
that range and the total sum of ordered HR over the entire 
tracing.

 Cardiac attractor entropy was defined as:

where 
S is entropy, K is Boltzman’s constant (1.38x10-23 Joules/

Kelvin), and P(X, Y) is the probability for each (X, Y) range.
The proportions of the cardiac attractor entropy were 

obtained by algebraically clearing the k constant. This re-
sulted in:
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Simplifying Equation 2(a) results in:

			               ,where 

and T represent the total with respect to the proportions 
between parts (U, D, C, M), as well as its parts in relation 
with other parts of the total.
  

Three regions were established for the cardiac attractor. 
The first contains all the common HR ranges, which were 
stored in the Holter monitors and diagnosed as normal. The 
second corresponds to the total HR ranges occupied by the 
normal Holter registries, excluding the values of the first 
region. The third region is the one remaining from the total 
delay map, i.e. the HR ranges that were not occupied by the 
normal Holter electrocardiographic registries. (20)

Following entropy calculation with Equation 2, the S/k 
proportions for each numerical attractor was determined 
with Equation 3. Then, the proportions between units and 
total, between tens and total, etcetera, were calculated for 
each defined region with Equation 4. After these steps, the 
diagnostic parameters of the previously developed methodol-
ogy were applied, (20) evaluating if at least two proportions 
in any of the three regions were outside the limits of nor-
mality, which is the parameter discerning normality from 
abnormality.

Pathological tracings were quantified considering the ex-
treme values of the previously defined normality, (20) which 
establish that the upper limit of normality must be sub-
tracted from the proportion values above these limits, while 
values inferior to the lower limit of normality are subtracted 
from this limit value. Once the value of these differences 
was obtained, they were added according to the units, tens, 
hundreds and thousands orders of magnitude, which finally 
quantified how far or close to normality they were. Thus, 
higher values corresponded to acute diseases and lower val-
ues to less severe diseases. 

Statistical analysis
The conventional clinical diagnosis was considered as the 
gold standard for the statistical analysis. A binary clinical 
classification was used, taking into account normal and 
pathological cases, according to the cardiologist’s diagnosis, 
for their later comparison with the mathematical diagnosis. 
True positives corresponded to cases diagnosed as patho-
logical by both methodologies, false positives as cases math-
ematically assessed as pathological and as normal by the 
clinical expert. False negatives were cases mathematically 
diagnosed as normal and as pathological by the experts, and 
finally, true negatives were cases diagnosed within normal 
limits by both methodologies. The kappa coefficient, evalu-
ating the concordance between the physical-mathematical 
and the conventional diagnosis was also calculated.

 where:
Co is the number of observed concordances, correspond-

ing to the number of patients with the same diagnosis by the 
mathematical methodology and the gold standard,

To represents the total number of cases, and
Ca corresponds to the number of random attributable 

concordances, calculated as:

 
where

f1 is the number of cases with mathematical values of 
normality,

C1 is the number of cases diagnosed as normal by the 
clinical expert; f2 represents the number of cases mathemat-
ically assessed as disease,

C2 is the number of cases diagnosed from the conven-
tional clinical point of view as having some pathology, and.

To represents the total number of cases. 

Ethical considerations
The study represents an investigation with minimum risk, 
according to Regulation 8430/93 of the Colombian Ministry 
of Health, as it is the result of physical and mathematical 
calculations on reports of previously prescribed noninvasive 
and paraclinical studies, according to conventionally estab-
lished protocols. The study also complied with the World 
Medical Association Declaration of Helsinki ethical princi-
ples.

 
RESULTS
The S/k ratios obtained were in the range of -5.108 to 
-4.709 for the normal registries, and varied between 
-5,069 and -3,295 for pathological cases (see Tables 
1 and 2). In addition, the entropies were between 
6.50x10-23 and 7.05x10-23 in normal cases and from 
4.55x10-23 to 7.00x10-23 in the dynamics evidencing 
disease. 

The entropy proportions for the group of patients 
with mathematical diagnosis of normality varied be-
tween 0 and 3,488 and for the group of patients with 
mathematical diagnosis of disease these values ranged 
between 0 and 26,141. It was seen that at least two of 
the proportions evaluated for the abnormal attractors, 
in any of the three areas, were not contained within 
the limits of normality, corroborating the previously 
found diagnostic parameter. In the case of patholo-
gies, sums of value subtractions were found outside 
the limits of normality in the interval between 0.002 
and 22,951. With the entropy proportions, it was pos-
sible to differentiate normality from disease, as well 

AMI: Acute myocardial infarction.
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29.69%
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14.92%

12.00%

Supraventricular tachyarrhythmia

Bradyarrhythmia

Ventricular tachyarrhythmia

Others (AMI, ischemic heart disease)

Table 1. Types of arrhythmias analyzed and percentage (with respect to 
total number of registries assessed) of dynamics classified within each 
type of arrhythmia.
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as the progression to more severe stages. The former 
was evidenced in Figure 1, where in the first evalua-
tion parameter, corresponding to the sum of the pro-
portions of thousands outside the limits of normality, 
these have higher values in acute dynamics and de-
crease until they disappear for normal dynamics. 

Figures 2, 3 and 4 show the electrocardiographic 
record attractors corresponding to three patients. 
Figures 2 and 3 evidence that the numerical attrac-
tor of acute dynamics (Figure 3) decreases its spatial 
occupation compared with normal dynamics (Figure 
2). In addition, it can be seen that for other pathologi-
cal dynamics (Figure 4), there is spatial occupation of 
region 3, also different from normal dynamics, since 
no values are found in this region for these dynamics.

To assess the diagnostic concordance between both 
methodologies, the results of clinical conclusions were 
unblinded showing 100% cardiac dynamics specificity 

and sensitivity between the mathematical diagnosis 
and the gold standard. Similarly, the concordance be-
tween the physical-mathematical and the convention-
al diagnoses, determined by the kappa coefficient was 
equal to 1. These results thus confirm the applicabil-
ity and clinical reproducibility of the methodology.

DISCUSSION
This is the first study in which the proportional 
entropy methodology is applied to 650 registries to 
establish differences between normal and pathologi-
cal electrocardiographic registries. This method can 
be applied to any specific case regardless of risk, sex 
or age factors, as long as patients are over 21 years 
of age, because the method is independent of causal 
analysis, following the reasoning contemplated with-
in the framework of modern physics. Additionally, the 
statistical results corroborated the mathematical pre-

Fig. 1. Distribution plot for hundred 
and thousand values of sums of 
proportions outside the limits of 
normality for some of the Holter 
monitoring studies assessed. Notice 
that the thousand values for the 
acute disease dynamics are much 
larger than for any other dynamics, 
whereas for normal dynamics these 
values are zero.

Fig. 2. Numerical attractor of a 
patient with normal ECG.
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Fig. 3. Numerical attractor of a 
patient with acute myocardial in-
farction, and frequent ventricular 
ectopic beats with bigeminy. Severe 
decrease of heart rate variability. 
Fixed repolarization disorder.

Fig. 4. Numerical attractor of a 
patient with sinus tachycardia and 
palpitations.

dictions, with 100% sensitivity and specificity values 
and kappa coefficient of 1.

Studies which classify the influence of risk factors, 
such as sex, age or day-night variation in the non-lin-
ear HRV parameters (24-30) are usually found in the 
medical literature. It has been observed, for example, 
that the circadian cycle changes during the transition 
phases after getting up and going to bed, increasing 
during the night, whereas non-linear HR fluctuations 
decrease with age. Other studies have analyzed HRV 

from mathematical theories with non-linear systems, 
developing new methodologies or evaluation indices 
of cardiac dynamics. (24-31) However, these studies 
have not yet shown their clinical applicability. (32, 33)

Conversely, the present methodology has exhib-
ited its diagnostic and predictive ability in different 
population studies, achieving the highest sensitivity 
and specificity values, (20-22) as corroborated in the 
present study. This is possible thanks to the acaus-
al perspective validating the method, which allows 
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Limitations
The impossibility of having Holter monitoring data in 
the study population during consecutive days limits 
an improved analysis of the methodology ability to as-
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Further studies are required to differentiate all 

types of cardiac arrhythmias using the methodology 
of the present study.

CONCLUSIONS
The self-organization of the geometric dynamic at-
tractor underlying the methodology enabled the quan-
titative differentiation of normal and abnormal car-
diac dynamic states, thus constituting a diagnostic aid 
applicable to clinical practice.
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