Behavior of Retrograde Conduction Time at Supraventricular Tachycardia Induction and its Role in Differential Diagnosis

Comportamiento del tiempo de conducción retrógrada al momento de la inducción de las taquicardias supraventriculares y su rol en el diagnóstico diferencial

CLAUDIO HADID, LEONARDO CELANO, DARIO DI TORO, EDGAR ANTEZANA-CHÁVEZ, SEBASTIÁN GALLINO, GUSTAVO IRALDE, LEONARDO ATEA, SERGIO GONZALEZ, SEBASTIÁN MALDONADO, CARLOS LABADET

ABSTRACT

Background: Differential diagnosis between orthodromic reentrant tachycardia (ORT) and atypical nodal reentrant tachycardia (ANRT) can be challenging. Our hypothesis was that ANRT presents more variability in retrograde conduction time at tachycardia onset than ORT.

Objectives: The objectives of this study were to assess retrograde conduction time variability at the start of tachycardia in ANRT and ORT, and postulate a new diagnostic tool to differentiate these two types of arrhythmias.

Methods: The ventriculoatrial (VA) interval of the first beats after tachycardia induction was measured until stabilization. The difference between the maximum and minimum VA interval was defined as delta VA (ΔVA), and the number of beats needed for VA interval stabilization was also assessed. Atrial tachycardias were excluded.

Results: In a total of 101 patients included in the study, ORT was diagnosed in 64 patients and ANRT in 37. ΔVA interval was 0 (interquartile range [IQR] 0-5) milliseconds (ms) in ORT vs. 40 (21-55) ms in ANRT (p <0.001). The VA interval significantly stabilized earlier in ORT (1.5 [1-3] beats) than in ANRT (5 [4-7] beats) (p<0.001). A ΔVA <10 ms diagnosed ORT with 100% sensitivity, specificity, and positive and negative predictive values. Ventriculoatrial interval stabilization in less than 3 beats predicted ORT with good diagnostic accuracy. The results were similar considering only accessory septal pathways. Typical NRTs presented an intermediate variation.

Conclusion: Presence of ΔVA <10 ms is a simple criterion that accurately differentiates ORT from ANRT, independently of the accessory pathway localization.

Key words: Tachycardia, Supraventricular - Tachycardia, Atrioventricular Nodal Reentry - Tachycardia, Ectopic Junctional

RESUMEN

Antecedentes: el diagnóstico diferencial entre la taquicardia reentrante ortodrómica (TRO) y la taquicardia por reentrada nodal atípica (TRNa) puede ser dificultoso. Nuestra hipótesis es que las TRNa tienen más variabilidad en el tiempo de conducción retrógrada al comienzo de la taquicardia que las TRO.

Objetivos: nuestros objetivos fueron evaluar la variabilidad en el tiempo de conducción retrógrada al inicio de la taquicardia en TRNa y TRO, y proponer una nueva herramienta diagnóstica para diferenciar estas dos arritmias.

Métodos: se midió el intervalo ventrículo-auricular (VA) de los primeros latidos tras la inducción de la taquicardia, hasta su estabilización. La diferencia entre el intervalo VA máximo y el mínimo se definió como delta VA (ΔVA). También contamos el número de latidos necesarios para que se estabilice el intervalo VA. Se excluyeron las taquicardias auriculares.

Resultados: se incluyeron 101 pacientes. Se diagnosticó TRO en 64 pacientes y TRNa en 37. El ΔVA fue 0 (rango intercuartílico, RIC, 0-5) milisegundos (ms) en TRO frente a 40 (21-55) ms en TRNa (p <0.001). El intervalo VA se estabilizó significativamente antes en la TRO (1,5 [1-3] latidos) que en la TRNa (5 [4-7] latidos; p <0,001). Un ΔVA <10 ms diagnosticó TRO con 100% de sensibilidad, especificidad y valores predictivos positivo y negativo. La estabilización del intervalo VA en menos de 3 latidos predijo TRO con buena precisión diagnóstica. Los resultados fueron similares considerando sólo vías accesorias septales. Las TRN típicas tuvieron una variación intermedia.

Address for reprints: Claudio Hadid. Pi y Margal 750, CABA. Email: claudio.hadid@gmail.com

Received: 09/12/2022 – Accepted: 02/17/2023

Part of the present work’s data has already been published in:

INTRODUCTION

Regardless several criteria have been described, the differential diagnosis between orthodromic reentrant tachycardia (ORT) through an occult accessory pathway (AP) and atypical intranodal reentrant tachycardia (ANRT) can be challenging. (1-15) The usefulness of these techniques usually depends on certain factors, such as sustained tachycardia and the distance from the stimulation site to the tachycardia circuit, as well as on certain conditions, as an adequate bundle of His recording or capture, and that the tachycardia is not interrupted by stimulation maneuvers or post-stimulation interval correction due to atrioventricular (AV) nodal delay caused after entrainment from the right ventricle (RV).

Conceptually, these techniques are based on localization, size and distance of the circuit to certain structures as the His bundle, the apex, or basal portions of the RV and have not been focused on the electrophysiological components of each circuit. ORT and ANRT use AV nodal tissue as antegrade limb of the tachycardia circuit. However, this is not the case for the retrograde limb. Although retrograde conduction runs by an AP in ORT, it travels through a slower pathway of the AV node in ANRT (both in the slow-slow as in the fast-slow forms). Therefore, retrograde conduction properties are different in ORT, typically independent of heart rate (HR), from typically decremental or dependent on HR in ANRT.

The abrupt change in HR that occurs at tachycardia onset causes changes in the conduction properties and refractoriness of the involved tissues. Our hypothesis is that this difference in retrograde conduction between ORT and ANRT can be better evidenced during tachycardia induction, in terms of greater retrograde conduction time variability in the first beats of ANRT than in those of ORT. The objectives of the study were to systematically analyze and compare retrograde conduction time variability at the start of ANRT and ORT, and find a cut-off value that constitutes a new diagnostic tool to differentiate between these two arrhythmias.

Additionally, we included a few patients with ORT mediated via a decremental conduction AP and a group of patients with typical NRT (tNRT). The analysis of tNRT was not carried out for diagnostic purposes, but with the objective of performing a pathophysiological description of retrograde conduction behavior in different types of paroxysmal supraventricular tachycardia (SVT).

METHODS

Study population

Patients with SVT referred for electrophysiological study were included in the analysis. Irregular tachycardia, preexci-
to differentiate between ORT and ANRT. Youden’s J statistic was considered to find the best cut-off point for these variables. (23) A p value <0.05 was considered as statistically significant. IBMSPSS v.26 (Armonk, NY, USA) was used to perform the analyses.

RESULTS
A total of 156 patients (73 men) with median age 46 (29-65) years were included in the study. Among them, 37 patients were diagnosed with ANRT and 64 had ORT via a classical occult fast conduction AP (Kent bundle), with septal (n=33), left lateral (n=30) or right lateral (n=1) localization. Six patients were also included with ORT via a decremental conduction AP (Coumel type) which were separately analyzed. The remaining 49 cases formed the group with tNRT.

ANRT analysis
All ANRTs had some degree of variability in the time of retrograde conduction, i.e. no ANRT exhibited a fixed VA interval. Median \(\Delta VA \) was 40 (21-55) ms and the VA interval stabilized in 5 (4-7) beats (Figure 1).

Comparison with ORT
Thirty-two (50%) ORTs displayed no variability in the VA interval (Figure 2), exhibiting a \(\Delta VA \) interval of 0 (0-5) ms, significantly lower than in ANRT (p<0.001). The VA interval stabilized in 1.5 (1-3) beats, significantly before than in ANRT (p<0.001) (Table 1). These findings were similar in septal and free wall APs.

No ORT had \(\Delta VA \geq 10 \) ms. As shown in Figure 3, \(\Delta VA <10 \) ms differentiated ORT from ANRT with 100% sensitivity, specificity, PPV and NPV. Stabilization of the VA interval in less than 3 beats identified ORT with 64.1% sensitivity, 94.6% specificity, 95.3% PPV, 60.3% NPV and AUC of 0.895 (Table 2).

The comparison between ANRT and ORT via septal AP (n=33) presented similar results. A \(\Delta VA <10 \) ms identified ORT with 100% sensitivity, specificity, PPV and NPV. Stabilization of the VA interval in less than 3 beats predicted ORT with 54.5% sensitivity, 94.6% specificity, 90% PPV, 70% NPV and AUC of 0.857 (Table 2).

Subgroup of patients with decremental conduction AP
In the six patients with decremental conduction AP, \(\Delta VA \) was significantly lower (15 [5-20] ms; p=0.006) than in patients with ANRT, but the VA interval was stabilized in a similar number of beats (4 [3-7]; p=0.481). A \(\Delta VA <20 \) ms identified these patients with 83.3% sensitivity, 74.2% specificity, 38.5% PPV, 95.8% NPV and AUC of 0.844. The ORTs via decremental pathways were compared with fast-slow ANRT, as they present with SVT with long RP. A \(\Delta VA <20 \) ms predicted ORT mediated by decremental conduction pathways with 83.3% sensitivity, 73.3% specificity, 55.6% PPV, 91.7% NPV and AUC of 0.856.

Fig. 1. ANRT induction in 2 different patients. A: Induction by programmed atrial stimulation. The VA interval stabilizes in the 5th beat and \(\Delta VA \) is 62 ms (maximum VA interval: 172 ms; minimum VA interval: 110 ms). The VA interval was measured from the beginning of the QRS complex in V1 to the atrial electrogram in the proximal coronary sinus. The intracavity recordings are bundle of His and proximal (p), medial (m) and distal (d) coronary sinus (CS). B: Induction by programmed atrial stimulation. The VA interval stabilizes in the 6th beat and \(\Delta VA \) is 56 ms (maximum VA interval: 275 ms; minimum VA interval: 219 ms). The VA interval was measured from the beginning of the QRS complex in V2 to the atrial electrogram in the medial coronary sinus. The intracavity recordings were proximal (p) and distal (d) right ventricle (RV) and proximal (p), medial (m) and distal (d) coronary sinus (CS).
Subgroup of patients with typical NRT
Forty-nine patients with typical NRT were included with the purpose of analyzing the characteristics of retrograde conduction via a fast pathway. All these patients showed some degree of variability in retrograde conduction time. ∆VA was 10 (6-16) ms and the VA interval was stabilized in 4 (3-4.5) beats. This represents an intermediate behavior of retrograde conduction. The variability of the VA interval (both in ∆VA as in the number of beats needed for its stabilization) was significantly lower than in ANRT and higher than in ORT (p<0.001 for both comparisons).

Globally, the variability of the VA interval did not evidence an incremental or decremental behavior. On the contrary, the VA interval showed an unpredictable beat to beat prolongation or shortening until a stable duration was reached. Isoproterenol infusion was used to induce tachycardia in 15% of patients whose tachycardia was faster than in those without isoproterenol (cycle length of 306 ms vs. 354 ms; p <0.001), but ∆VA and the necessary number of beats for VA interval stabilization were not significantly different. The VA interval variability was similar in tachycardia induced by programmed atrial or ventricular stimulation.

DISCUSSION
Our study findings show that ORTs have minimum or null variability in the first VA intervals after tachycardia induction. Conversely, all ANRTs evidenced some degree of VA interval variability. This higher variability was manifested as a greater difference between the longest and shortest VA interval (∆VA), as well as in a higher number of beats needed to attain VA interval stabilization. A ∆VA <10 ms differentiated ORT from ANRT with 100% sensitivity, specificity, PPV and NPV. This is a highly relevant finding, mainly in cases of occult septal APs where the ablation strategies of

Table 1. VA interval variability in ORT and ANRT

<table>
<thead>
<tr>
<th></th>
<th>ORT (n=64)</th>
<th>ANRT (n=37)</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆VA (ms)</td>
<td>0 (0-5)</td>
<td>40 (21-55) *</td>
</tr>
<tr>
<td>Number of beats</td>
<td>1.5 (1-3)</td>
<td>5 (4-7) *</td>
</tr>
<tr>
<td>∆VA <10 ms</td>
<td>64/64 (100%)</td>
<td>0/37 (0%) *</td>
</tr>
<tr>
<td>Beats <3</td>
<td>41/64 (64.1%)</td>
<td>2/37 (5.4%) *</td>
</tr>
</tbody>
</table>

* p <0.001 for all comparisons.

∆VA: Difference between maximum and minimum VA interval; Beats <3: patients with stable VA interval in <3 beats; Number of beats: necessary number of beats for VA interval stabilization; ANRT: Atypical nodal reentrant tachycardia; ORT: Orthodromic reentrant tachycardia; VA: ventriculoatrial
The reentrant circuit differ substantially from those employed in ANRT.

Previous studies

Variability in the AV relation during tachycardia has been consistently associated with atrial tachycardia. (24,25) This can occur spontaneously or in response to stimulation maneuvers. Effectively, this criterion has been used to differentiate atrial tachycardia from NRT in which atrial activation is assumed as “associated” to ventricular activation. (1,5,24-26) This assumption has been considered for ORT throughout all publications on SVT.

A recent study showed changes in retrograde conduction time after fast-slow ANRT induction. (27) The authors reported shortening of the first HA interval compared with the HA interval of the established tachycardia. We analyzed all the VA intervals since the start of tachycardia until it attained a stable duration for 3 consecutive beats and included not only fast-slow ANRT but all ANRTs, as well as ORTs. As previously mentioned, VA interval variability in this

Fig. 3. The scatter diagram shows individual ∆VA in ANRT and ORT. The 10 ms line represents the cut-off value to differentiate between these two arrhythmia mechanisms.

Table 2. Diagnostic yield of VA interval variability to differentiate ORT from ANRT

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>AUC</th>
<th>AUC</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORT vs. ANRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∆VA <10 ms</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>1</td>
</tr>
<tr>
<td>Beats <3</td>
<td>(52-76%)</td>
<td>(87-100%)</td>
<td>(89-100%)</td>
<td>(48-73%)</td>
<td>(0.836-0.954)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORT (septal accessory pathways) vs. ANRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∆VA <10 ms</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>1</td>
</tr>
<tr>
<td>Beats <3</td>
<td>(38-72%)</td>
<td>(87-100%)</td>
<td>(77-100%)</td>
<td>(57-83%)</td>
<td>(0.771-0.954)</td>
</tr>
</tbody>
</table>

∆VA: Difference between maximum and minimum VA interval; ANRT: Atypical nodal reentrant tachycardia; AUC: Area under the ROC curve; Beats <3: patients with stable VA interval in <3 beats; NPV: Negative predictive value; ORT: Orthodromic reentrant tachycardia; PPV: Positive predictive value. Values between parentheses represent 95% confidence interval. VA: ventriculoatrial
study did not exhibit a uniform pattern (incremental or decremental).

In an analysis of 411 patients with typical and atypical NRT, Taniguchi et al. reported variations in the P-QRS relation during tachycardia. (28) The authors defined variation of the P-QRS relation during tachycardia as a change in the AH and HA intervals >20 ms, together with a change in the AH/HA ratio. This phenomenon was found in 19% of cases with ANRT at tachycardia onset (only 3 patients) during a Wenckebach AV or 2:1 block, or at the end of spontaneous or secondary to adenosine administration tachycardia. This study did not include patients with ORT.

VA interval variability at tachycardia induction had never been used as a criterion to distinguish ANRT from ORT. We analyzed the VA relation only at tachycardia induction, both in ANRT as in ORT, and found that all ANRTs had some degree of variability compared with only 50% in ORTs. ∆VA was <10 ms in all ORTs and in none of the ANRTs.

This is an easily applicable criterion without the usual limitations of the commonly used electrophysiological maneuvers (e.g., non-sustained tachycardia, termination during entrainment attempts, loss of capture during stimulation, or His bundle inadequate recording or capture). It can be evaluated measuring the initial VA intervals of tachycardia, without additional maneuvers. The only requisite that must be fulfilled is tachycardia induction.

The study of Obeyesekere et al. also focused on tachycardia induction to differentiate ORT from ANRT. They proposed applying during induction criteria that are used after entrainment (post-stimulation interval and stimulus-atrium interval), to manage non-sustained tachycardias. (29) However, the marked variability of the initial VA intervals in our study (VA=40 [21-55] ms in ANRT) may lead to a false diagnosis with this maneuver. Moreover, the criteria postulated by Obeyesekere is limited to tachycardias induced from the ventricle. Our findings were similar in tachycardias induced by atrial and ventricular stimulation. The fact that an adequate diagnosis was performed in a median of 5 beats since tachycardia induction, suggests the potential usefulness of VA interval variability in non-sustained SVT.

The value of ∆VA for ORT diagnosis is independent of AP localization. The usefulness of many diagnostic criteria described is lower in the presence of left lateral AP (4,30-32).

Possible mechanisms

As previously mentioned, the retrograde limb of the tachycardia circuit has different properties in ORT and ANRT. The refractory period is longer in the first tachycardia beat and progressively shortens when this starts. In this scenario, retrograde conduction via a slow nodal pathway can be less uniform and show different conduction times from the one occurring via an AP with all-or-none conduction. (33,34)

Another possible explanation for VA interval variability in ANRT is the occult penetration of the extra stimulus that initiates the tachycardia, which results in different conduction times and degrees of refractoriness in the rest of the circuit. Occult conduction between fast and slow pathways was demonstrated in patients with dual AV nodal physiology. (35,36)

Lastly, a final common superior pathway could be the seat of retrograde conduction changes. (37,38) Since tNRT had lower VA variability than ANRT, a different behavior of the final common pathway should be assumed in these two situations.

Limitations

Although ∆VA showed excellent diagnostic accuracy, it has some limitations. Irregular tachycardias were not included to avoid the influence of cycle length or antegrade conduction changes on retrograde conduction time. The value of our criterion lies in the identification of small changes in the initial VA intervals of a regular tachycardia. Tachycardias with transient bundle branch block were also excluded. The results of the present study do not apply in these two situations.

In addition, atrial tachycardias were also excluded from the study. Since these tachycardias may have VA interval variation, they must be ruled out by means of other criteria before performing the ANRT diagnosis.

CONCLUSION

Retrograde conduction time after SVT induction is significantly more variable (in terms of ∆VA and the necessary number of beats to reach VA interval stabilization) in ANRT than in ORT. A ∆VA <10 ms distinguished ORT from ANRT with 100% sensitivity and specificity. We present a new method, simple and accurate, which does not require additional maneuvers to tachycardia induction, and that should be employed to perform the differential diagnosis between ANRT and ORT, independently of AP localization.

Conflicts of interest

None declared.

(See authors’ conflict of interests forms on the web/Additional material.)

Funding

None.

REFERENCES

3. Martínez-Alday JD, Almendral J, Arenal A, Ormaetxe JM, Pastor

34. Jackman WM, Friday KJ, Fitzgerald DM, Yeung-Lai-Wah JA, La-

