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ABSTRACT

Artificial intelligence (AI) is based on computer programs that imitate human thinking and automate certain processes. Artificial 
intelligence has been studied in the medical field for over 50 years, but in recent years, its growth has been exponential.
The field of cardiovascular imaging is particularly attractive since AI can guide non-experts in image acquisition, automate processes 
and measurements, guide diagnoses, detect findings not visible to the human eye, make opportunistic diagnoses of unexpected 
conditions in the index test, or identify patterns of association within a large amount of data as a source of hypothesis generation.
In the field of cardiovascular prevention, AI has been used for diagnostic, prognostic, and therapeutic purposes in managing cardio-
vascular risk factors such as dyslipidemia and hypertension. 
While there are limitations to the use of AI, such as cost, accessibility, compatibility of programs, external validity of results in 
certain populations, and ethical-legal aspects such as data privacy, this technology is rapidly growing and is likely to revolutionize 
current medical practice.
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RESUMEN

La inteligencia artificial (IA) está basada en programas computacionales que pueden imitar el pensamiento humano y automatizar 
algunos procesos. En el ámbito médico se está estudiando hace más de 50 años, pero en los últimos años el crecimiento ha sido ex-
ponencial. El campo de las imágenes cardiovasculares es particularmente atractivo para aplicarla, dado que, guiadas por IA, personas 
no expertas pueden adquirir imágenes completas, automatizar procesos y mediciones, orientar diagnósticos, detectar hallazgos no 
visibles al ojo humano, realizar diagnósticos oportunistas de afecciones no buscadas en el estudio índice pero evaluables a través de 
las imágenes disponibles, o identificar patrones de asociación dentro de una gran cantidad de datos como fuente de generación de 
hipótesis. En el campo de la prevención cardiovascular, la IA se ha aplicado en diferentes escenarios con fines diagnósticos, pronósti-
cos y terapéuticos en el manejo de algunos factores de riesgo cardiovascular, como las dislipidemias o la hipertensión arterial. Si bien 
existen limitaciones con el uso de la IA tales como el costo, la accesibilidad y la compatibilidad de los programas, la validez externa 
de los resultados en determinadas poblaciones, o algunos aspectos éticos-legales (privacidad de los datos), esta tecnología está en 
crecimiento vertiginoso y posiblemente revolucione la práctica médica actual.
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INTRODUCTION
The term artificial intelligence (AI) was coined in 1956 
by John McCarthy, who ventured that "every aspect 
of learning or any other feature of intelligence can in 
principle be so precisely described that a machine can 
be made to simulate it". (1) In this line, we can under-
stand AI as a branch of computer science that aims 
to create software programs capable of automating 
activities related to human thinking, such as decision 
making, problem solving, learning, and development 
of concepts and abstractions. (1-3) Machine learning 
(ML) is a subfield of AI, that develops algorithms ca-
pable of recognizing patterns in data, to solve certain 
tasks without being explicitly programmed to do so. 
Such algorithms do not require the constant interven-
tion of a user to solve tasks in complex environments 
(autonomy) and can improve their performance based 
through the experience gained with new data (adapt-
ability). (4,5) Deep learning (DL) is a subfield of ML 
that involves the repetition of a processing block, 
arranged consecutively in layers to extract complex 
abstractions based on relatively simpler representa-
tions through a hierarchical learning process. (6-8) 
In general, DL models use Artificial Neural Networks 
(ANN) inspired by the way biological neural system 
works, such as the brain processes information. ANN 
consist of interconnected functional units called neu-
rons that perform calculations and mathematical op-
erations to propagate information. (7) A Deep Neural 
Network (DNN) is an ANN with multiple layers. A 
typical DNN consists of an input layer, one or more 
hidden layers, and an output layer; an output layer 
serves as input for the next one. (8-10) The perfor-
mance of these methods in solving complex tasks in 
various fields of knowledge has led to their introduc-
tion in the medical field. Thus, the first clinical deci-
sion support systems used in Medicine, which relied 
on the depuration of medical knowledge databases 
and the formulation of robust decision rules, began 
to be replaced by data-driven systems, i.e., ML and 
DL models. (10) Implementing this type of solution 
has various impacts: 1) it provides professionals with 
a second opinion based on available data, which can 
improve diagnostic performance; b) it optimizes pro-
cesses and workflows within the healthcare system; 
and c) patients benefit from an improvement in the 
quality of care. (9) AI has been utilized in Medicine for 
diagnostic, prognostic, and predictive purposes. It can 
automatically process various data modalities, includ-
ing clinical, genetic, biomedical signals, and medical 
images, generated across different medical specialties. 
(10)

AI in cardiovascular imaging
The use of AI in Medicine has been around for over 
half a century. In fact, as early as 1968, Earl Hunt 
wrote a review article on the subject applied to the 
field of Psychology. (11) The number of articles pub-
lished on the subject has increased slowly since then, 

until about 5 years ago when the increase became ex-
ponential. In 2022 alone, nearly 39 000 articles were 
published on the subject, with approximately 1 in 3 
articles devoted to imaging in Medicine.

The field of medical imaging is particularly attrac-
tive in this area, due to its exponential growth, com-
plexity, and the limited availability of specialists to 
create and interpret such images in certain locations 
or at certain hours. The use of AI makes it possible 
to reduce acquisition and reading times, acquire and 
interpret images by untrained personnel, increase ac-
curacy, and reduce the risk of diagnostic errors. On 
the other hand, AI has unique abilities such as detect-
ing image features that may be difficult for humans to 
identify and finding unexpected patterns in an endless 
number of variables. These capabilities make AI a val-
uable tool for advancing new diagnoses and hypoth-
eses. Combined with the ability to jointly evaluate a 
large amount of data beyond imaging, such as epide-
miological, clinical, laboratory, genetic, and biometric 
data, the advances in science appear to be unpredict-
able. (12–14)

Optimizing timing. Image acquisition by "inexperienced" 
personnel. Reducing variability
Image segmentation is a well-developed tool nowa-
days. AI can recognize and separate anatomical struc-
tures more quickly than a trained human. Once the 
segmentation is complete, the software can automati-
cally measure diameters, volumes, displacements, 
flows, and other parameters of the test with an ac-
curacy similar to or better than that of an expert. (15) 
(Figures 1 and 2).

Variability is one of many limitations of diagnostic 
methods. Results-based decision-making (diameters, 
ejection fraction, areas) can be a challenge for those 
interpreting imaging tests. AI is showing promising 
results in this regard due to its speed and reproduc-
ibility of measurements.

In echocardiography there are programs that can 
evaluate the quality of the acquired images, guide 
inexperienced operators to enhance their quality, au-
tomatically acquire them when the section detected 
is suitable for analysis, and perform automatic meas-
urements. A study found that 8 nurses, without echo-
cardiography training, could obtain AI-guided images 
from 30 patients each, with diagnostic quality compa-
rable to that obtained by 5 registered cardiac sonog-
raphers. (16)

The software can identify views and perform cham-
bers, mass, volume, and strain measurements faster 
and more reproducibly than an experienced operator. 
Tsang et al. demonstrated the feasibility of measur-
ing ventricular and atrial volumes, as well as ejection 
fraction, using 3D echocardiography with an adaptive 
algorithm. The automated measurements were com-
parable not only to manual measurements but also to 
those obtained by magnetic resonance imaging (MRI), 
with high reproducibility (zero variability when re-
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performed with high diagnostic accuracy (99.52% for 
normal mitral valve, 99.38% for mild MR, 99.31% 
for moderate MR and 99.59% for severe MR). (19) 
In patients with aortic stenosis, an AI system utiliz-
ing echocardiographic measurements, except for left 
ventricular outflow tract diameter and velocity, dem-
onstrated higher accuracy in diagnosing severe aortic 
stenosis than the continuity equation, even in popu-
lations with ventricular dysfunction or low flow-low 
gradient aortic stenosis. (20)

In cardiac MRI, planning and acquisition times, 
artifact correction, and automated measurements are 

peating the analysis on the same dataset). In addition, 
the average time per patient decreased from 144 ± 32 
seconds (manual analysis) to 26 ± 2 seconds (auto-
mated analysis). (17)

A prospective study utilized an AI training pro-
gram to analyze diastolic function in accordance with 
ASE/EACVI 2016 guidelines. The program was shown 
to accurately classify diastolic dysfunction patterns 
with 99% agreement to the guidelines. (18)

Estimating valvular heart disease severity can 
be difficult in some scenarios. Using AI, automated 
quantification of mitral regurgitation (MR) could be 

Fig. 1. Automated segmentation of a cardiovascular computed tomography scan with contrast agent. The software identifies 
the cardiac chambers, myocardium, coronary arteries, and ascending aorta. It provides segmentation of cardiac structures with 
different colors, which can be edited and corrected by professionals. Software: IntelliSpace Portal. Image and Information 
Management Software. Version 12.1. Philips Medical Systems Nederland B.V. Veenpluis 6, 5684 PC Best, The Netherlands

Fig. 2. A and B. Automatic cardiovascular reconstruction derived from Figure 1 (A) and with "removal" of all structures to 
visualize exclusively the aorta and coronary tree (B). Software: IntelliSpace Portal. Image and Information Management Software. 
Version 12.1. Philips Medical Systems Nederland B.V. Veenpluis 6, 5684 PC Best, The Netherlands.
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advancing quickly, reducing the time needed for test-
ing and analysis.  (21) Artificial intelligence analysis 
was quicker (20 seconds per patient) and more accu-
rate than human (13 min).  (22) The authors estimate 
a 46% reduction in required trial sample size with the 
segmentation model based on AI with left ventricular 
ejection fraction as the endpoint.

In computed tomography (CT), AI is being evalu-
ated to reduce radiation dose by optimizing image ac-
quisition, converting non-contrast scans to contrast 
scans and vice versa so as to detect coronary artery 
calcification. (13)

Improvement of diagnostic and prognostic processes: 
reduction of errors, opportunistic diagnoses
AI enables the identification of unexpected patterns or 
associations that link a condition or set of conditions 
to a specific finding or disease. Its use in echocardiog-
raphy proved to be useful in differentiating between 
athlete's heart and hypertrophic cardiomyopathy, (23) 
between constrictive pericarditis and restrictive car-
diomyopathy, (24), and in the correct identification of 
patients with hypertrophic cardiomyopathy, amyloi-
dosis, and pulmonary hypertension. (25)

A multicenter study with cardiac MRI evaluated 
the precision of experts, trained junior physicians and 
ML to measure parameters of ventricular function, 
particularly ejection fraction, and the time required.   
Expert, trained junior, and ML precision were simi-
lar (coefficient of variation 6.1 [95% CI, 5.2%–7.1%], 
p = 0.2581; 8.3 [95% CI, 5.6%–10.4%], p = 0.3653; 
8.8 [95% CI, 6.1%–11.1%], p = 0.8620, respectively).  
However, automated analysis was 186 times faster 
than humans (0.07 versus 13 minutes). (26)

 In Nuclear Medicine imaging, the use of AI dem-
onstrated a superior performance in diagnosing ob-
structive coronary artery disease compared to the 
commonly used total perfusion deficit (similar speci-
ficity with higher sensitivity) and required less time 
for the analysis (0.5 seconds per patient). (27) The use 
of a Support Vector Machine algorithm demonstrat-
ed better performance than the analysis of ischemic 
changes, total perfusion deficit or ejection fraction 
changes, with an area under the ROC curve (AUC) 
significantly better than that of two independent ex-
pert operators. (28) In another study, when clinical 
variables were combined with information from stress 
testing and perfusion imaging, AI was superior to the 
existing isolated images, expert medical assessment or 
automated quantification in predicting events in 2619 
patients followed up for more than 3 years. (29) 

Radiomics is another important aspect of clinically 
relevant information from medical imaging. Radiom-
ics can identify tissue features that may indicate the 
type of tumor, characteristics of a lesion (acute or 
chronic), type of ventricular hypertrophy, or differ-
ences in myocardial tissue in response to risk factors 
by analyzing image characteristics not detectable by 
the human eye. (30–32) 

Mannil et al. demonstrated the ability of AI in de-
tecting myocardial infarction on noncontrast comput-
ed tomography images, with a sensitivity of 86% and 
specificity of 81%, which was not possible by visual 
assessment of two readers with experience in cardio-
vascular imaging.  (33) 

The utility of ML analysis in predicting cardiovas-
cular events was demonstrated in the population of 
the CONFIRM study (10 030 patients) with 25 clini-
cal parameters and 44 coronary computed tomogra-
phy angiography parameters. ML analysis predicted 
5-year mortality significantly better (AUC 0.79) than 
the Framingham risk score (AUC 0.61) or conven-
tional coronary computed tomography angiography 
parameters (segment stenosis score, segment in-
volvement score, or modified Duke index, AUC 0.64, 
0.64, and 0.62, respectively). (34) Another analysis of 
8844 patients from the same cohort revealed that a 
ML algorithm had greater prognostic accuracy than 
conventional segment analysis in predicting myocar-
dial infarction or death at 3 years (AUC for ML 0.771, 
vs. AUC for conventional analysis between 0.685 and 
0.701). (35)

Similarly, investigators in the PARADIGM regis-
try demonstrated a higher predictive value of a ML 
framework to identify individuals at risk for rapid 
progression of coronary atherosclerotic plaque. (36) 

In patients with newly diagnosed pulmonary hy-
pertension, Dawes et al. used MRI to define a 3D 
model of right ventricular motion that more accurate-
ly predicted survival than conventional imaging and 
hemodynamic, functional, and clinical markers (AUC 
0.73 vs. 0.60). (37)

There are many examples of opportunistic diagno-
ses in the literature with the use of AI. Opportunistic 
findings are those that are unexpected and discovered 
on medical imaging tests performed for other reasons. 
(38) Pyrros et al. detected 5% of patients with diabe-
tes using chest radiographs with acceptable diagnos-
tic accuracy (AUC 0.77). (39) The detection of calcium 
plaques in the coronary arteries on a conventional 
chest CT scan (score >100) has been shown to have 
prognostic value for predicting 10-year mortality (HR 
1.51; 95% CI 1.28-1.79); death, myocardial infarction, 
or stroke (HR 1.57; 95% CI 1.33-1.84); and death, my-
ocardial infarction, stroke, or revascularization (HR 
1.69; 95% CI 1.45-1.98) compared with no calcium. 
(40) Parameters indicating osteopenia or osteoporosis 
can be detected in chest or abdominal CT scans, (41) 
or in coronary artery calcium CT scans, (42) without 
additional cost or radiation exposure to patients. Sim-
ilarly, detection of atheromatous plaques, fatty liver 
disease, sarcopenia, and visceral adipose tissue can 
identify patients at risk of metabolic syndrome and/
or long-term events such as death, cardiovascular 
events, and fractures. Early detection of these risks 
could be cost-effective. (43,44)  DL-based models have 
been shown to improve the speed and accuracy of em-
physema detection. (45)
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Implementation of AI in the field of cardiovascular prevention
Multiple AI-based techniques have been implemented 
in different scenarios associated with cardiovascular 
prevention. One of them is the diagnosis of familial 
hypercholesterolemia (FH), the most common genetic 
disorder of lipid metabolism. Familial hypercholes-
terolemia results in exposure to very high levels of 
low-density lipoprotein cholesterol (LDL-C) through-
out lifetime, significantly increasing the risk of car-
diovascular events if left untreated. (46) The clinical 
diagnosis of FH (clinical scores) can be established by 
collecting clinical and laboratory (LDL-C) features. 
The diagnosis of FH can be confirmed genetically by 
identifying heterozygous or biallelic phenotypes, espe-
cially in genes LDLR, APOB or PCSK9. (47) However, 
AI techniques have the potential to improve the iden-
tification of patients with FH. In this context, several 
studies have demonstrated that AI-based models have 
an excellent predict value to detect FH cases con-
firmed by genetic testing. (48-51) Furthermore, that 
predictive value performed better than traditional 
methods based on risk scores, such as the Dutch Lipid 
Clinic Network criteria. 

Another scenario in which AI was evaluated is the 
calculation of LDL-C.  Standard practice estimates 
LDL-C using the Friedewald formula. (52) However, 
this equation is inaccurate when triglycerides are 
elevated or LDL-C values are very low. (53) To im-
prove accuracy, other formulas have been developed, 
such as the Martin-Hopkins formula or the Sampson 
equation.  (54,55) Many studies have evaluated differ-
ent AI-based techniques to estimate LDL-C. (56-61) 
In this case, the AI-based algorithms for estimating 
LDL-C performed similarly or better than the conven-
tional Friedewald formula or the more contemporary 
Martin-Hopkins or Sampson equations. 

The barriers associated with the use of statins is 
another field where AI has been evaluated. Statins in-
tolerance represents a clinical challenge, and its prev-
alence is frequently overestimated. (62) Importantly, 
the nocebo effect could play a key role in this signifi-
cant public health issue. (63) A recent study assessed 
AI-based techniques for analyzing large amounts of 
publicly available social media data to generate in-
sights into people's perceptions about statins. (64) The 
analysis revealed predominantly neutral to negative 
sentiment in the discussions analyzed, with 30.8%, 
66.6% and 2.6% reporting negative, neutral or posi-
tive sentiments, respectively. Sarraju et al. developed 
a DL-based model to identify statin nonuse and rea-
sons for statin nonuse using unstructured electronic 
medical records from a large cohort of patients with 
atherosclerotic cardiovascular disease. (65). The mod-
el identified key patient-level reasons (side effects, 
patient preference) and clinician-level reasons (guide-
line-discordant practices) for statin nonuse. Another 
study used a DL-based algorithm in patients with 
diabetes. (66) Again, this algorithm categorized the 
reasons for statin nonuse based on a large dataset of 

electronic medical records, including patient reasons 
(side effects and hesitancy to use statins), physician 
reasons (guideline‐discordant practice), and system 
reasons (clinical inertia). Understanding the barriers 
that patients and physicians face in using statins can 
help reduce clinical inertia and improve treatment ad-
herence. 

AI  has also been evaluated in hypertension. Ac-
cording to some reports, AI-based systems could help 
continuously monitor blood pressure using wearable 
technologies. (67) For example, blood pressure could 
be estimated from a photoplethysmography signal 
obtained from a smartphone or a smartwatch using 
DL. Furthermore, ML algorithms can help make early 
diagnosis of hypertension (68-70) and even of second-
ary hypertension. (71) In addition, ML algorithms 
accurately predict ambulatory blood pressure levels 
after treatment initiation. This could assist clinicians 
in personalizing antihypertensive treatment. (72,73)

Several cardiovascular risk functions or scores 
were developed based on large epidemiological stud-
ies. Usually, these scores can be calculated based on 
a few variables that are easy to obtain in the office. 
Although these tools are very useful in clinical prac-
tice, they have limitations related to calibration and 
discrimination ability. (74) In this context, many stud-
ies have incorporated AI/ML-based algorithms to op-
timize cardiovascular risk prediction. These studies, 
conducted in different regions worldwide, evaluated 
multiple algorithms utilizing different AI techniques. 
These algorithms included more variables than those 
typically used to stratify cardiovascular risk. (75-78) 
In general, these models, which utilized data from 
thousands of patients, have shown excellent predic-
tive ability. In some cases, they have even outper-
formed traditional scores like the Framingham risk 
score. (75) Another AI-based model that considered 
the presence of subclinical atheromatosis (qualitative 
analysis of atherosclerotic plaques by CT) had signifi-
cant prognostic value for major cardiovascular events, 
and showed additional value over clinical risk factors, 
coronary artery calcium score, or traditional methods 
for evaluating CT scan images. (79)

Challenges and limitations
The usefulness of AI in Medicine is undeniable, and 
its implementation is rapidly expanding. However, it 
is not free of limitations.

Firstly, many of the programs solve some spe-
cific aspects (such as automated segmentation and/
or quantification), but not others relevant to image 
analysis. The development cost of these programs is 
very high, which limits their availability.

Another important aspect is applicability. Al-
though many AI-based results are applicable in clini-
cal practice, some findings may lead to conclusions 
with limited clinical value, especially in the current 
stage of Medicine. This may lead professionals to dis-
regard the results because they deviate from the usual 
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clinical findings of their practice. Additionally, the de-
velopment of the program may have been biased by 
the selected population, which could limit its gener-
alizability to other populations with different charac-
teristics. This, in turn, limits the external validity of 
the program.

Similarly, some AI programs based on DL create 
models that are difficult or impossible to interpret due 
to their complexity, resulting in what is known as the 
"black box" effect. Professionals who must interpret 
the results may find it difficult to accept or reject them 
because they cannot understand how the model used 
to determine the results was constructed. This raises 
clinical, ethical and even legal issues when assessing 
responsibility in the decision-making process. (80,81)

As with previous analysis programs, it is impor-
tant to obtain consistent results across different soft-
ware programs to ensure that imaging tests can be 
analyzed using programs from different brands or ge-
neric analysis software.

And. finally, data privacy is another crucial ele-
ment when considering this type of tool.
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