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Implications of Artificial Intelligence in Intravascular Imaging Methods 

Implicancias de la inteligencia artificial en los métodos de imagen endovascular
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ABSTRACT

Percutaneous coronary intervention (PCI) is one of the primary revascularization strategies in patients with coronary artery disease 
(CAD). Several studies support the use of intravascular imaging methods to optimize PCI. However, these methods are underutilized 
in contemporary clinical practice and face challenges in data interpretation. Therefore, the incorporation of artificial intelligence 
(AI) is seen as an attractive solution to promote and simplify their use.
AI can be defined as a computer program that mimics the human brain in its ability to collect and process data. Machine learning is 
a sub-discipline of AI that involves the creation of algorithms capable of analyzing large datasets without making prior assumptions, 
while deep learning focuses on the construction and training of deep and complex artificial neural networks. The incorporation of AI 
systems to intravascular imaging methods improves the accuracy of PCI, reduces procedure duration, and minimizes interobserver 
variability in data interpretation. This promotes their wider adoption and facilitates their use. The aim of this review is to highlight 
how current AI-based systems can play a key role in the interpretation of data generated by intravascular imaging methods and 
optimize PCI in patients with CAD.
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RESUMEN

La angioplastia transluminal coronaria (ATC) es una de las principales estrategias de revascularización en pacientes con enfermedad 
coronaria aterosclerótica (ECA). Numerosos estudios respaldan la optimización de la ATC mediante métodos de imagen endovascu-
lar; sin embargo, estos métodos son subutilizados en la práctica clínica contemporánea y enfrentan desafíos en la interpretación de 
los datos obtenidos, por lo que la integración de la inteligencia artificial (IA) se vislumbra como una solución atractiva para promover 
y simplificar su uso.
La IA se define como un programa computarizado que imita la capacidad del cerebro humano para recopilar y procesar datos. 
El aprendizaje de máquinas (machine learning) es una subdisciplina de la IA que implica la creación de algoritmos capaces de 
analizar grandes conjuntos de datos sin suposiciones previas, mientras que el aprendizaje profundo (deep learning) se centra en la 
construcción y entrenamiento de redes neuronales artificiales profundas y complejas. Así, se ha demostrado que la incorporación de 
sistemas de IA a los métodos de imagen endovascular incrementa la precisión de la ATC, disminuye el tiempo del procedimiento y la 
variabilidad interobservador en la interpretación de los datos obtenidos, promueve así una mayor adopción y facilita su utilización. 
El propósito de la presente revisión es destacar cómo los sistemas actuales basados en IA pueden desempeñar un papel fundamental 
en la interpretación de los datos generados por los métodos de imagen endovascular, lo que conduce a una mejora en la optimización 
de la ATC en pacientes con ECA.

Palabras clave: Inteligencia artificial - Angioplastia coronaria - Imagen endovascular

Rev Argent Cardiol 2024;92:42-53. http://dx.doi.org/10.7775/rac.v92.i1.20728 

Address for reprints: Héctor M. García-García, 110 Irving St NW, Washington DC 20010, United States, Phone: +1 202-877-7000, 
hect2701@gmail.com; hector.m.garciagarcia@medstar.net

Received: 11/23/2023 – Accepted: 01/19/2024 

                   https://creativecommons.org/licenses/by-nc-sa/4.0/
©Revista Argentina de Cardiología



43

INTRODUCTION
Despite the remarkable advances achieved in pre-
ventive strategies and therapeutic approaches in 
recent decades, atherosclerotic coronary artery dis-
ease (CAD) remains the leading cause of morbidity 
and mortality worldwide. (1) Although percutaneous 
coronary intervention (PCI) is recognized as a funda-
mental therapeutic strategy for endovascular revas-
cularization in patients with CAD, its benefit is lim-
ited by the need for prior and accurate interpretation 
of data obtained by diagnostic coronary angiography, 
which has significant limitations in the assessment 
of vascular involvement due to its characteristics. 
In this context, and in line with advances in phar-
macological treatment strategies, technologies based 
on imaging and intravascular physiology have been 
developed and refined to assess the risk of patients 
with CAD and to improve their treatment.

So far, several studies have supported the optimi-
zation of PCI with stent implantation guided by in-
travascular imaging methods, such as intravascular 
ultrasound (IVUS) or optical coherence tomography 
(OCT). These methods offer considerable benefits by 
significantly improving stent implantation and re-
ducing the incidence of adverse clinical events dur-
ing follow-up. (2-5) However, the use of these opti-
mization techniques is currently limited, possibly 
due to their cost to healthcare systems, the need for 
operator experience to accurately interpret the data 
obtained, and the fact that they can significantly in-
crease the overall procedure time. In this context, 
the incorporation of artificial intelligence (AI) as a 
tool to facilitate and simplify the use of intravascu-
lar imaging and the interpretation of the informa-
tion obtained is emerging as an attractive strategy. 
The aim of this review is to highlight how current 
AI-based systems can play a key role in the inter-
pretation of data generated by intravascular imaging 
techniques, and thus improve optimization of PCI in 
patients with CAD.

RATIONALE FOR ARTIFICIAL INTELLIGENCE
AI can be defined as a computer program that resem-
bles the human brain in its ability to collect and pro-
cess data. (6) This concept was first coined in 1956 
during the Dartmouth Summer Research Project (7) 
and generated explosive interest in the 1970s to be 
implemented in biomedical sciences. (8) 

Machine learning (ML) is a sub-discipline of AI 
that involves the creation of algorithms capable of 
analyzing large datasets without making prior as-
sumptions and learning to identify rules and pat-
terns among variables for prediction and classifica-
tion. (9) The versatility and great potential of these 
algorithms are due to their ability to incorporate a 
wide set of variables from various medical modalities, 
ranging from clinical parameters to two- and three-
dimensional imaging data, taking into account the 

multidimensional nonlinear interactions between 
them. ML approaches can be broadly classified into 
three categories: supervised learning, unsupervised 
learning, and semi-supervised learning. (10) Super-
vised learning is the most common approach in ML, 
where the system establishes associations from train-
ing data obtained from examples that already have 
an outcome identified by a specialist. The algorithm 
embeds the specialist's knowledge within the model. 
In this method, from the given input features, the 
system outputs a suitable regression or classification 
analysis of clinical and imaging data. On the other 
hand, in situations where training data is unavail-
able or insufficient, unsupervised learning is used to 
discover hidden structure of data. (10) Finally, semi-
supervised learning begins with a small set of labeled 
data and augments the training data size by gradu-
ally labeling unlabeled data. (10) (Table 1).

Deep learning (DL) is a sub-discipline of ML that 
focuses on the construction and training of deep and 
complex artificial neural networks. These networks 
are designed to mimic the learning process of the 
human brain. Unlike conventional neural networks, 
which may have only a few hidden layers, deep neu-
ral networks have multiple hidden layers, which al-
low the network to learn hierarchical and abstract 
features of input data, which make them especially 
effective for image processing tasks. Convolutional 
neural networks (CNN) represent a specialized type 
of artificial neural network specially designed for pro-
cessing and analyzing the spatial structure of data 
that has a grid-like topology, such as an image. Sev-
eral studies have used CNN to automatically charac-
terize atherosclerotic plaques present in the coronary 
arteries, employing a variety of approaches. (11-13)

Thus, a suitably trained AI system can compre-
hensively analyze diverse data and provide a diagno-
sis by interpreting information in a novel way. This 
makes it an appealing tool for its incorporation into 
image-based biomedical techniques to improve risk 
prediction and personalize clinical decisions.

IMPLEMENTATION OF AI IN INTRAVASCULAR IMAGING 
METHODS
Visualization of the cross-sectional anatomy of 
the coronary arteries using intravascular imag-
ing methods has high sensitivity in identifying and 
characterizing atherosclerotic plaques by extracting 
tissue-specific parameters from the backscattered 
ultrasound signal. (14,15) In this context, when con-
sidering IVUS as a strategy to optimize revasculari-
zation by PCI, multiple clinical studies have shown 
that it reduces adverse clinical events at follow-up 
compared to standard angiographic guidance. (2-4)  

Limitations of IVUS include its limited axial reso-
lution, which makes it difficult to accurately identify 
thin-cap fibroatheroma (TCFA), and its limited lat-
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Table 1. Machine Learning categories.

Category Description Subtype Examples

Supervised 

learning
Labelled data and results

Classification: Uses an algorithm to assign 

data into specific categories, reaching 

conclusions on how to appropriately label 

those categories within the dataset

Logistic regression, Bayesian networks, Random 

Forest, Ridge regression, Elastic Net regression, 

LASSO (Least Absolute Shrinkage and Selection 

Operator) regression and artificial neural networks.

Regression: Analyzes the relationship between 

dependent and independent variables. It is 

commonly used to make projections

Unsupervised 

learning

Detects crucial realtionships and 

similarites in unlabelled datasets 

Clustering: Groups unlabeled data based on 

their similarities or differences

Hierarchical clustering, K-means clustering and 

Principal component analysis.

Dimensionality reduction:  Reduces the 

number of data inputs to a manageable size 

while also preserving the integrity of the 

dataset; used when the number of features, or 

dimensions, in a given dataset is too high

Semi-

supervised 

learning

A combination of supervised 

learning and unsupervised 

learning  

It includes both labeled and unlabeled results 

and classes, and is used in image and speech 

recognition systems.

Reinforcement 

learning 

Based on behavioral psychology, 

uses a reward function 

Utilizes specific reward criteria and is used in 

medical imaging, analysis and disease detection.

eral resolution which may hinder the proper identifi-
cation of coronary vascular dissections and atheroma 
plaques, as well as the correct positioning of stent 
struts. Considering these limitations, ML-based al-
gorithms offer opportunities to optimize IVUS per-
formance.

OCT has an inherent advantage in the morpho-
logical analysis of atherosclerotic plaques due to its 
high spatial resolution. (16) Compared to IVUS, OCT 
offers superior resolution, enabling clear visualiza-
tion of thin fiber layers. However, its ability to pen-
etrate tissues is limited, which lowers its capacity in 
detecting plaque size, large lipid cores, and external 
elastic layers. (17) It is important to note that the 
human eye has limitations, which can lead to the 
omission of a significant amount of data in the im-
ages. Therefore, there is an urgent need to introduce 
new optimization technologies in intravascular im-
aging methods to improve diagnostic efficiency and 
accuracy. AI constitutes a promising option within 
this framework.

In this scenario, there are DL methods based on 
adversarial attacks on CNN learning that could be 
used to transfer knowledge between IVUS and OCT. 
For example, images acquired with OCT and IVUS 
could be used to train AI models to increase the 
resolution of IVUS images. Similarly, IVUS images 
could be used to train AI models to complement the 
information of deep atherosclerotic plaque in OCT 
images. (Figure 1)

INCORPORATION OF AI IN PRE-PROCEDURAL ASSESSMENT
In the assessment before PCI, it is crucial to perform 
a thorough characterization of the vascular anatomy 
and atherosclerotic plaque using intravascular imag-
ing methods to adequately select the endovascular 
technique to be used and the dimensions of the stent 
to be implanted. In this context, it is essential to iden-
tify the following characteristics before PCI, includ-
ing the morphology and length of the atherosclerotic 
plaque, the diameter of the coronary vessels, and the 
predicted outcome of the intervention (Figure 2).

Several studies have explored the feasibility of 
implementing AI systems to improve accuracy, repro-
ducibility, and speed in the analysis of intravascular 
imaging methods. In this setting, a multicenter obser-
vational study evaluated the accuracy and consistency 
of an AI system-based approach for automatic plaque 
characterization using OCT. (18) A post hoc analysis 
of OCT pullbacks from cohorts of patients with CAD 
participating in five different clinical trials was per-
formed, dividing these data into two groups: training 
data set and testing data set. Thus, quantification 
of plaque burden using a CNN-based DL system for 
OCT analysis correlated very well with conventional 
manual pullback measurements (coefficient of deter-
mination R2 = 0.98, p < 0.001). (18) Furthermore, 
through an external validation process that included 
OCT pullbacks different from those previously ana-
lyzed, the CNN-based DL system demonstrated an 
overall diagnostic accuracy of 86.6% (95% CI: 83.7-
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Fig. 1. Benefits provided by 
artificial intelligence in intra-
vascular imaging methods.

Fig. 2. Artificial intelligence 
parameters for optimizing 
percutaneous coronary inter-
vention.

The incorporation of AI models in the characteri-
zation of the coronary arteries by means of OCT has 
improved the interpretation of atherosclerotic plaques 
and increased the predictive ability of adverse clinical 
events during follow-up. In this context, a retrospec-
tive observational study analyzed OCT pullbacks in 
the nonculprit vessel of patients with acute coronary 

89.1). The software performed the best in fibrous 
plaques (97.6%; 95% CI: 93.4-99.3%), followed by li-
pidic plaques (90.5%; 95% CI: 85.2-94.1%) and calcifi-
cations (88.5%; 95% CI: 82.4-92.7%). (18) Of note, one 
of the challenges associated with this type of study 
is the lack of histological validation, since the initial 
classification is often based on expert observations.
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syndrome. (19) In this analysis, AI was used to de-
termine the optical flow ratio (OFR) as a surrogate 
parameter of coronary physiology derived from OCT, 
as well as to identify the lipid-to-cap ratio (LCR), a 
novel morphologic OCT index that integrates the li-
pid burden of the atherosclerotic plaque and the cap 
thickness over the diseased segment. (19) In this re-
gard, determination of OFR and LCR using an AI 
system demonstrated superior discriminatory ability 
to predict nonculprit vessel–related major adverse 
cardiovascular events (NCV-MACE) compared with 
predictions based on minimum luminal area (MLA) 
determination and identification of TCFA. The com-
bination of LCR > 0.33 and OFR ≤ 0.84 resulted inde-
pendent risk factors for NCV-MACE during follow-up. 
(19) Table 2 presents studies in which AI was used as 
a strategy to optimize OCT.

IVUS is one of the main intravascular imaging 
methods for assessing coronary artery calcium, a pre-
dictor of adverse cardiovascular events and long-term 
mortality. (46) One of its limitations is the lack of an 
automated quantification system for coronary artery 
calcium. However, this limitation could be overcome 
by implementing AI systems that provide objective 
and reproducible automated quantification that cor-
relates with validated coronary artery calcium scores. 
(47) In this context, a single-center retrospective co-
hort study evaluated the ability of an AI algorithm 
trained with IVUS imaging data to quantify coronary 
artery calcium and its association with adverse clini-
cal events. (48) An IVUS calcium score (ICS) based 
on an AI model was shown to have a high predictive 
value for the development of adverse clinical events 
during follow-up. There was a 51% increased risk of 
adverse events in patients with an ICS ≥ 85.  This ICS 
represents the first validated coronary calcium score 
associated with adverse clinical events since the in-
troduction of computed tomography-derived calcium 
scoring. (48,49) AI systems have the remarkable abil-
ity to distinguish between various coronary artery cal-
cium patterns, such as calcium in the artery wall and 
calcified nodule. (Table 3)

Prediction of stent under-expansion using AI algorithms
Despite substantial improvements in interventional 
procedures, stent design, drugs and polymers, and 
the adoption of therapeutic strategies, acute stent 
thrombosis and in-stent restenosis remain critical 
issues. It can be difficult to fully expand a coronary 
artery stent in a heavily calcified coronary artery le-
sion. Careful evaluation of these risks of under-ex-
pansions before the intervention will aid treatment 
planning. AI-based systems play a crucial role in 
obtaining an automated and reproducible prediction 
since morphological characterization of atheroscle-
rotic plaque and prediction of the risk of stent under-
expansion are often challenging procedures.

IVUS is one of the most commonly intravascular 
procedures used to optimize stent implantation and 

has been associated with a decrease in adverse clini-
cal events during follow-up. (2-4) However, IVUS has 
certain limitations, as determining the minimum 
stent area (MSA) in a single cross-section does not 
fully reflect the stent status along the entire vessel 
length, and there are no guidelines to predict the 
postprocedural MSA and the degree of stent expan-
sion. In this context, CNN-based AI algorithms can 
automatically and adaptively calculate the probabil-
ity of under-expansion after implantation. One study 
has developed an IVUS-based AI algorithm to pre-
dict the post-stenting stent area and the probability 
of under-expansion. (58) A dataset of pre-procedural 
and post-stenting IVUS images was obtained and 
was subsequently divided into a training set and a 
validation set for the algorithm.  A DL CNN-based 
system was used to create a regression model to pre-
dict post-stenting stent area. XGBoost models for 
binary classification were developed to predict post-
stenting stent under-expansion (defined as an MSA 
<5.5 mm2).  MSA predicted by the pre-procedural 
IVUS-based regression model significantly corre-
lated with those measured on post-stenting IVUS 
(r = 0.802; p < 0.001), and an accuracy of 94% was 
obtained to predict stent under-expansion (AUC = 
0.94). (58) (Table 3)

Moderate to severe coronary artery calcifica-
tion is a strong predictor of MACE after PCI. (64) 
This may be due to stent under-expansion caused 
by severely calcified plaque and inadequate lesion 
preparation prior to implantation. In this context, 
OCT-guided stent implantation provides a thorough 
assessment of coronary calcification and stent de-
ployment characteristics, including aspects such as 
expansion, malapposition and stent edge dissection. 
(65) In addition, DL-based systems have been de-
veloped to optimize procedure duration and predict 
stent under-expansion using OCT. A retrospective 
single-center study analyzed OCT pullbacks with the 
goal of developing a DL algorithm to predict stent 
under-expansion before the procedure. (66) The DL 
algorithm exhibited remarkable discrimination abil-
ity to detect stent under-expansion, with an AUC of 
0.853. This finding strongly supports the idea that 
AI systems may represent an extremely valuable ad-
dition to intravascular imaging methods, optimizing 
PCI. (66) In this context, we currently count with 
OCT imaging with AI-driven information (Ultreon™ 
1.0 Software, Abbott). This software automatically 
detects the severity of coronary artery calcium, de-
termines external elastic lamina and measures the 
vessel diameter, which not only increases the accu-
racy of real-time stenting, but also simplifies the in-
terpretation of the acquired images, reducing inter-
observer variability. (67)

Use of AI for segmentation and lumen area dimensions
In the assessment before PCI, it is crucial to ac-
curately measure the vascular dimensions to select 
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Table 2. Studies using artificial intelligence as a strategy to optimize optical coherence tomography.

Author Year Objective Algorithm used Results

Athanasiou 

LS, et al. (20)
2011

To extract a set of features from grayscale 

OCT images and employ them to classify the 

atherosclerotic plaque using an ML algorithm.

Random Forest
The ML algorithm associated with OCT accurately 

characterized the atherosclerotic plaques. 

Wang Z, et 

al. (21)
2012

To propose and validate an OCT-based ML 

method to analyze fibrous cap volume to 

identify vulnerable atherosclerotic plaques.

Dynamic 

Programming

The proposed ML method is fast, accurate and 

robust, and can be used in future studies to further 

characterize atherosclerotic plaques.

Ughi GJ, et 

al. (22)
2013

To develop and validate an ML algorithm to 

optimize the characterization of atherosclerotic 

plaques by OCT.

Random Forest
The ML algorithm provided accurate characterization 

of atherosclerotic plaques.

Xu M, et al. 

(23)
2014

To propose a ML algorithm for automatic 

detection of atherosclerotic plaques using OCT.

Support Vector 

Machine

The proposed ML system is accurate and stable for 

the detection of atherosclerosis by OCT.

Wang Z, et 

al. (24)
2014

To examine the quantitative tissue properties 

that can differentiate plaque erosion from intact 

fibrous plaques and to develop a computer-

aided classification model for in vivo diagnosis of 

plaque erosion.

Logistic regression 

The quantitative logistic regression model can be 

used to improve the diagnostic accuracy for plaque 

erosion in vivo using OCT.

Shalev R, et 

al. (25)
2016

To develop an ML method automatic 

classification of calcium in OCT images.

Use of filters to select 

regions for extraction 

of sub-images (SI’s)

The ML algorithm presents high accuracy for 

characterization of coronary artery calcium in OCT, 

images which could be used in 'real time'.

Rico-Jimenez 

JJ, et al. (26)
2016

 To present a novel computational method for 

automated IV-OCT plaque characterization
A-line Modeling

The ML algorithm presents high accuracy for 

characterization of atherosclerotic plaques.

Xu M, et al. 

(27)
2017

To propose a DL model for the identification 

and characterization of fibroatheromas in  OCT 

images.

AlexNet,GoogLeNet, 

VGG-16, VGG-19 

The DL system provides a highly accurate 

characterization of fibroatheromas.

Shi P, et al. 

(28)
2018

To develop a DL-based model to identify 

vulnerable atherosclerotic plaques in OCT 

images.

Fully CNN, Deep CNN
The DL method presented high accuracy for 

characterizing vulnerable atherosclerotic plaques.

Guo X, et al. 

(29)
2018

To create a DL algorithm to characterize 

atherosclerotic plaque components and  

quantify fibrous cap thickness.

Least Squares Support 

Vector Machine (LS-

SVM)

The segmentation method base on LS-SVM provided 

accurate characterization of fibrous cap thickness.

Kolluru C, et 

al. (30)
2018

To develop neural network-based methods for 

classifying plaque types in OCT images.
CNN, ANN

The DL model presented high accuracy for classifying 

atherosclerotic plaque subtypes.

He S, et al. 

(31)
2018

To analyze the performance of a DL model for 

characterization of atherosclerotic plaques in 

OCT images.

CNN
The DL algorithm demonstrated high accuracy to 

characterize atherosclerotic plaques.

Lee J, et 

al.(32)
2019

To develop a DL system for automatic 

segmentation of atherosclerotic plaques based 

on OCT images.

SegNet
The DL algorithm showed high accuracy for 

segmentation of atherosclerotic plaques.

Prabhu D, et 

al. (33) 
2019

To develop ML methods to identify fibrolipidic 

and fibrocalcific A-lines in OCT images.

Support Vector 

Machine

The proposed classification algorithm is suitable 

for automated OCT plaque classification and 

segmentation.

Liu R, et al. 

(34)
2019

To improve the detection quality of vulnerable 

plaque using a DL algorithm associated with 

OCT.

Deep CNN
The proposed DL algorithm has high accuracy to 

detect vulnerable plaques in OCT images.

Johnson KW, 

et al. (35)
2019

To use a ML algorithm and transcriptomic data 

to estimate the predict if fibrous cap thickness 

will increase in response to statin therapy

Elastic net K top 

scoring pair

A ML algorithm using transcriptomic models could 

predict increase in fibrous cap thickness as a result of 

statin treatment.

Baruah V, et 

al. (36)
2020

To determine the feasibility of a histology-

validated virtual OCT (VH-OCT) algorithm using 

AI.

CNN

"This note is the first report to classify automatically 

tissue 

components with AI based on histological validation 

and extension into in vivo patient images."
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Table 2 (Cont.)

Author E3:I3 Year Objective Algorithm used Results

Lee J, et al. 

(37)
2020

To develop an ML algorithm for characterization 

of atherosclerotic plaques using a hybrid 

learning approach.

Deep CNN
The proposed algorithm could accurately 

characterize the atherosclerotic plaques.

Lee J, et al. 

(38)
2020

To develop an automated, two-step DL approach 

for characterizing coronary calcified plaque
CNN, SegNet

Compared to the standard approach, the two-step 

DL system is highly accurate for characterization of 

atherosclerotic plaques in OCT images.

Cha JJ, et al. 

(39)
2020

To evaluate the usefulness of ML FFR based on 

OCT and compare it with wire-based FFR.
Random Forest

OCT-based ML-FFR has good correlation with wire-

guided FFR.

Chu M, et al. 

(18)
2021

To develop and validate a DL algorithm for 

characterization of atherosclerotic plaques in 

OCT images.

CNN

The DL algorithm for automatic characterization 

of atherosclerotic plaques in OCT images offers 

provides excellent diagnostic accuracy in both 

internal and external validation.

Balaji A, et al. 

(40)
2021

To develop a DL algorithm for automatic 

coronary artery segmentation in OCT images.
DeepCap

The AI system linked to OCT demonstrated high 

accuracy for automatic segmentation of coronary 

arteries.

Yin Y, et al. 

(41)
2021

To develop DL algorithm for characterization of 

atherosclerotic plaques in OCT images.
TwopathCNN

A proposed DL algorithm presented higher accuracy 

for the characterization of atherosclerotic plaques, 

compared with conventional DL algorithms.

Li C, et al. 

(42)
2021

To develop a DL algorithm for automatic 

quantification of coronary artery calcium in OCT 

images.

DenseNet, CNN

The proposed DL model presents high accuracy 

for discriminating coronary artery calcium in OCT 

images.

Yang G, et al. 

(43)
2021

To develop a DL model to automatically analyze 

stents with both thin (≤ 0.3 mm) and very thick 

(> 0.3 mm) tissue coverage, and an algorithm 

to accurately analyze stent area for vessels with 

multiple stents.

CNN

The proposed model can accurately detect stent 

struts with very thick tissue coverage and analyze 

stent areas in vessels implanted with multiple stents.

Hong H, et 

al. (19)
2022

To analyze the role of AI for predicting major 

adverse cardiovascular events by determining 

the plaque morphology and coronary artery 

physiology in OCT images.

Deep CNN

The study identified a novel DL algorithm to 

characterize the morphology and physiology of 

atherosclerotic plaques, which can predict the risk of 

adverse cardiovascular events.

Sun H, et al. 

(44)
2022

To develop a DL-based AI method for fully 

automated detection of atherosclerotic plaque 

erosion.

Mask RCNN with 

convexity and 

curvature (RCNN-CK), 

SVM

The developed DL algorithm presented good ability 

to discriminate atherosclerotic plaque erosion in OCT 

images.

Wu P, et al. 

(45)
2023

To analyze whether  OCT and IVUS images can 

assist each other in stent 3D reconstruction 
F1-score

Using AI systems, intravascular images of OCT and 

IVUS can provide reciprocal assistance to each other 

in stent 3D reconstruction.

the adequate stent. Determining the length of the 
atherosclerotic plaque is crucial to avoid geographic 
miss during implantation. Additionally, knowing 
the lumen and vessel diameter is crucial in select-
ing the appropriate stent for implantation. One of 
the most arduous tasks when analyzing IVUS data-
sets is the segmentation of the lumen boundary and 
external elastic lamina, for which an expert has to 
manually outline them. This process is performed 
in the transversal axis and longitudinal view and 
usually results in large intra and interobserver 
variability. Additionally, artifacts are often present 
in IVUS images throughout the longitudinal view, 
and can lead to errors in lumen segmentation. To 

correct these errors, electrocardiogram-gating is 
necessary. Since this process is crucial for accurate 
data interpretation, AI algorithms are presented 
as an accurate and consistent alternative for se-
lecting the correct frames. One study proposed an 
automated workflow to segment lumen boundaries 
in IVUS datasets using a DL approach and multi-
frame (MF) CNN. The dataset consisted of IVUS 
pullbacks. After an automated gating, AI identified 
end-diastolic frames to avoid longitudinal artifacts 
and performed automated lumen segmentation 
using the MF-CNN algorithm. The correlation be-
tween the actual lumen and that obtained by the 
DL algorithm was high (r = 0.99). (55) (Table 3). 

AI: artificial intelligence; ANN: artificial neural network; CNN: convolutional neural network; DL: deep learning; FFR: fractional flow reserve; 
IVUS: intravascular ultrasound; ML: machine learning; OCT: optical coherence tomography
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Author  Year Objective Algorithm used Results

Sheet D, et 

al. (50)
2014

To develop an innovative ML-based 

technique (SDH) to automatically 

characterize morphology in IVUS images.

Random Forest

SDH is highly consistent with traditional histology 

in characterizing calcification, fibrotic tissues and 

lipids.

Kim GY, et 

al. (51)
2018

 To develop a classification model based 

on virtual histology to characterize 

atherosclerotic plaque components in 

fibrous tissue, fibro-fatty tissue, necrotic 

core, and dense calcium.

Multi-level classification 

model consisting of three 

different nets

The proposed method showed high accuracy for 

classifying all types of plaques.

Bae Y, et al. 

(52)
2019

To develop ML models to predict optical 

coherence tomography (OCT) thin-cap 

fibroatheroma (TCFA).

ANN, Support Vector 

Machine, Naïve Bayes

The presence of OCT-TCFA was predicted with 

high accuracy by ML algorithms.

Jun TJ, et al. 

(53)
2019

To identify the most accurate method to 

classify TCFA using various ML classifiers.

Feed-forward neural 

network (FNN), K-nearest 

neighbor (KNN), Random 

Forest, CNN

The CNN classifier performed best, while FNN, KNN 

and Random Forest classifiers were found to be 

similar to the physician's TCFA diagnostic criteria.

Wang L, et 

al. (54)
2020

To identify the most accurate ML classifier 

to  predict atherosclerotic plaque 

vulnerability change as determined by IVMP.

Generalized linear mixed 

regression model (GLMM),  

Support Vector Machine, 

Random Forest

MPVI was the best single risk factor using both 

GLMM and Random Forest  while plaque area was 

the best using SVM.

    Ziemer 

PG, et 

al.(55)

2020

To evaluate the utility of a novel, 

automated ML system to segment the 

lumen boundary in IVUS datasets.

Multi-frame convolutional 

neural network

The proposed ML algorithm is suitable to 

effectively segment the lumen boundary in IVUS 

scans, reducing time required and need for manual 

delineation.

Lee JG, et al. 

(56)
2020

To determine the usefulness of AI 

algorithms for identifying functionally 

significant coronary stenoses (FFR ≤0.80).

L2 penalized logistic 

regression, ANN, Random 

Forest, AdaBoost, CatBoost, 

Support Vector Machine

IVUS-based ML algorithms showed good 

diagnostic performance for identifying ischemia-

producing lesions.

Cho H, et al. 

(57)
2021

To develop IVUS-based ML algorithms 

for classifying attenuation and calcified 

plaques.

EfficientNet

The ML algorithm for plaque characterization 

accurately identifies high-risk coronary artery 

lesions.

Neleman T, 

et al. (48)
2021

To develop and validate an ML algorithm 

to automatically quantify coronary 

calcifications in IVUS images.

Support Vector Machine

The IVUS calcium score calculated by an ML 

algorithm was strongly associated with the long-

term risk of major adverse cardiac events.

Min HS, et 

al. (58)
2021

To develop pre-procedural IVUS-based DL 

models for predicting the occurrence of 

stent underexpansion.

CNN, EXtreme Gradient 

Boosting' (XGBoost)

The algorithms accurately predicted (94%) 

incomplete stent expansion.

Bass RD, et 

al. (59)
2022

To compare the performance of human 

readers to the ML algorithm and against 

the readings from a Core Laboratory for 

coronary vessel segmentation.

Multi-frame convolutional 

neural network

Similar assessment of segmentation performed 

by humans,  ML algorithm and core lab, with 

machines being more time efficient.

Bajaj R, et 

al. (60)
2022

To train and assess the efficacy of a 

ML classifier for plaque component 

classification that relies on IVUS 

echogenicity and NIRS-signal.

Algorithm J48

The combination of echogenicity with NIRS-signal 

appears capable of overcoming limitations of 

echogenicity.

Wissel T, et 

al.(61)
2022

To propose a fully data-driven strategy to 

longitudinally detect and subsequently 

segment stent struts in IVUS frames.

Deep cascade learning

Using the DL algorithm, a reduced risk of 

ambiguities and false-positive predictions was 

observed for segmenting stents.

Blanco PJ, et 

al. (62)
2022

To determine the accuracy of a DL 

algorithm for automatic segmentation in 

IVUS images.

Multi-frame convolutional 

neural network, Gaussian 

process  

The proposed DL approach provides accurate 

segmentations, which facilitates its implementation 

in clinical routine by mitigating the costs involved 

in the manual management of IVUS datasets.

Arora P, et 

al. (63)
2023

To use a DL algorithm to identify the extent 

of vascular calcification in IVUS images.

AlexNet, GoogLeNet, 

SqueezeNet

DL algorithm identify the extension of vascular 

calcification with high accuracy.

Table 3.  Studies using artificial intelligence as a strategy to optimize intravascular ultrasound.

DL: deep learning; FFR: fractional flow reserve; IVUS: intravascular ultrasound; ML: machine learning; MPVI: morphological plaque vulnerability 
index; NIRS: near infrared spectroscopy; OCT: optical coherence tomography; SDH: stochastic driven histology; TCFA: thin-cap  fibroatheroma; 
VH: virtual histology
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This DL algorithm has been extended for lumen and 
external elastic lamina segmentation with excellent 
results. (62) In turn, these results were replicated 
in other studies, such as a post-hoc, cross-sectional 
analysis of the IBIS-4 study, (68) which evaluated the 
performance of a DL algorithm based on a MF-CNN 
for automated lumen and vessel contour segmenta-
tion. (59) This study showed that, compared to the 
determination of vessel structures by human read-
ers, the DL algorithm showed a strong correlation 
with those of the Core Lab. This offers the advantage 
of eliminating human inter and intraobserver varia-
bility, improving accuracy in lumen contour segmen-
tation, and significantly reducing the time required 
to complete the analysis (average human time spent 
per pullback = 47 minutes vs. ML = 1 minute). (59)

Utility of AI to optimize stent implantation
After PCI, it is essential to optimize stent placement 
to reduce the likelihood of adverse clinical events 
during follow-up. Intravascular imaging guidance 
using IVUS or OCT provides clear advantages over 
conventional angiographic guidance in terms of op-
timization. However, determining the parameters 
to be corrected in complex PCI procedures can be a 
challenging task. In this context, three-dimensional 
(3D) reconstruction of implanted stents using intra-
vascular imaging methods is useful for addressing 
implantation issues. Of note, as manual reconstruc-
tion is a complicated process, AI algorithms can be a 
valuable tool. The introduction of DL algorithms has 
revolutionized automatic stent 3D reconstruction 
visualized by intravascular imaging methods, ena-
bling reliable and real-time analysis during the in-
tervention. (61) OCT and IVUS have different image 
styles, share the same anatomic structures, and can 
be aligned by cross-modal translation. In this con-
text, a study explored the feasibility of using OCT and 
IVUS to assist each other in DL-based automatic 3D 
reconstruction of the stents implanted during PCI. 
The study found that the DL algorithm performs ex-
ceptionally well in generating 3D reconstructions of 
implanted stents, regardless of whether conventional 
IVUS or high-definition IVUS were used for optimi-
zation. This information can be valuable when ana-
lyzing potential improvements and optimizations in 
the implantation procedure. (45) (Table 2). 

CHALLENGES AND FUTURE PERSPECTIVES
Considering that AI is a data-driven science, the lack 
of standardization in collecting and storing medical 
data may negatively influence the interoperability of 
AI systems in the medical field. Data heterogeneity 
hinders the effective integration of AI algorithms in 
different clinical settings and the communication of 
information between healthcare systems.

Furthermore, the performance of AI algorithms 
in clinical practice depends heavily on the repre-
sentativeness of the training data compared to the 

data encountered in daily practice. In some cases, the 
data collected for developing AI algorithms may not 
be representative of the population it serves. leading 
to poor performance.  In this sense, external valida-
tion and field testing are essential to determine the 
level of confidence of AI algorithms.

As artificial AI is already being integrated into 
clinical workflows, it is essential to demonstrate its 
value in patient care, support investment in these 
new algorithms, and encourage the adoption of new 
reimbursement or payment models. To achieve this 
on a large scale, it is essential to conduct cost-effec-
tiveness studies of these emerging technologies.

CONCLUSIONS
When combined with intravascular imaging methods 
such as IVUS or OCT, AI systems significantly opti-
mize stent implantation through a fully automated 
framework that identifies vascular structures and 
guides correct stent positioning. This facilitates the 
accurate selection of the stent to be implanted and 
the need for stent correction techniques. Addition-
ally, it reduces both the total procedure time and in-
terobserver variability. This could promote greater 
adoption of intravascular imaging techniques and 
ultimately reduce the incidence of adverse clinical 
events during follow-up.
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